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Nanostructures with long-range order in monolayer self-assembly
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A key ingredient for continued expansion of nanotechnologies is the ability to create perfectly ordered arrays
on a small scale with both site and size control. Self-assembly—i.e., the spontaneous formation of
nanostructures—is a highly promising alternative to traditional fabrication methods. However, efforts to obtain
perfect long-range order via self-assembly have been frustrated in practice as ensuing patterns contain defects.
We use an idea based on the fundamental physics of pattern formation to introduce a strategy to consistently

obtain perfect patterns.
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Most innovative applications of nanoscience, such as
memory devices, quantum-dot-based next-generation lasers,
and biosensors, rely on our ability to design and fabricate
ordered small-scale structures [1-5]. In addition, at the nano-
scale, thermodynamic, electronic, and optical properties are
size dependent, and their values often differ significantly
from those of bulk objects [6—8]. The ability to engineer
perfectly ordered nanostructures enables the realization of
devices with coherent characteristics that can be “tuned” for
specific technological applications [1,3-5,9]. Furthermore,
ordered nanostructures are an extremely fertile laboratory to
test fundamental quantum-mechanical effects. Unfortunately,
current—primarily lithographic—techniques used for minia-
turization are reaching their limits [10]. Self-assembly—the
spontaneous formation of regular arrays—is emerging as one
of the most promising avenues for both miniaturization and
fabrication. The primary disadvantage associated with self-
assembly is its inability to create long-range-ordered struc-
tures. In this Rapid Communication, we use an idea based on
the fundamental physics of pattern formation to introduce a
strategy to consistently obtain long-range-ordered structures.

Consider an experimental or model system that generates
monolayer patterns when a spatially uniform layer of atoms
is slowly deposited (e.g., [1,3,9]). Typical large-aspect-ratio
patterns in such systems are similar to Fig. 1(a), which
herein is generated using a paradigmatic model to be de-
scribed shortly. In the case shown, relevant control param-
eters are chosen so that hexagonal patterns are stable. As is
evident, the pattern displays locally hexagonal domains;
however, it contains multiple grains with differing hexagonal
orientations. Also manifest are the presence of concomitant
grain boundaries, triple junctions, dislocations, and disclina-
tions. It is this lack of long-range order that prevents the
widespread use of self-assembly for many technological
applications.

We begin by outlining why defective patterns are so ubig-
uitous [1,3-5,9,11-14] using one of many paradigmatic mod-
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els of self-assembly [15-23]. These models contain three
processes critical for self-assembly: (a) phase separation,
which describes the affinity of monolayer atoms to each
other; (b) phase coarsening, which quantifies the interfacial
energy between occupied and vacant monolayer domains;
and (c) phase refining, due to the strain resulting from inho-
mogeneous surface stress [14]. Note that (a) and (b) promote
while (c) inhibits the growth of homogeneous domains. The
model system used in this paper is the following Cahn-
Hilliard-type equation [24]:
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for the spatiotemporal dynamics of the (coarse-grained) frac-
tional coverage C(x,y) on the monolayer under spatially uni-
form deposition of atoms. Here, P(C)=In(C/1-C)+Q
(1-2C) and
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is a spatial integral associated with phase refining [14]. The
appearance and stability of patterns depend on three control
parameters. The first, Q, is the ratio of the width of an inter-
face between occupied and vacant domains and the nearest-
neighbor distance. The second, (), characterizes the free-
energy function through P(C). The third control parameter,
Cy, is the mean coverage (C(x,y)) of the monolayer, which
is conserved in the model. The pattern shown in Fig. 1(a) is
the long-time solution of Eq. (1) reached by evolving a uni-
form but slightly noisy initial state and is in qualitative
agreement with experimental patterns [14].

The model we have adopted (i.e., the Suo-Lu model) is
not universal and cannot describe all types of self-
assembling systems. However, our central strategy is based
only on symmetry and symmetry breaking. Typically (but
not necessarily always) such features supercede details of the
actual physical system or model [29]. For example, bifurca-
tion of the homogeneous solution to a hexagonal array and
the orientation of the array near boundaries are common fea-
tures of most pattern-forming systems (without up-down
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FIG. 1. (Color online) (a) A pattern generated in a two-
dimensional domain by integrating model (1) with periodic bound-
aries and Q=1.6 and 1=1.6. The deposition is given by a random
field C(x,y)=0.38 =0.01. Bright dots denote areas of high concen-
tration on the monolayer. Patterns generated using other statistically
similar depositions are different in detail, but have similar statistical
features. Few representative defects (grain boundaries, triple junc-
tions where two grain boundaries meet, and penta-hepta defects)
have been highlighted. (b) The dynamics of the structure factor S(k)
during relaxation to pattern (a). Patterns emerge from the uniform
background during the first stage when the dynamics is effectively
linear. The diffusion length is inversely proportional to S(k) at the
end of this stage. The second stage represents domain coarsening.
The characteristic domain size in (a) is inversely proportional to the
corresponding structure factor.
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symmetry) [29]. Thus, conceptually, at least (if not the de-
tails), our work is expected to be applicable to many other
nonlinear models that govern self-assembling systems not
described by the Suo-Lu model. For instance, as elaborated
in the discussion, three-dimensional quantum-dot growth
(based on interfacial strain) is governed by a different non-
linear model [25,26]; strategies described here are applicable
for this case as well.

The model (1) is isotropic and homogeneous, and self-
assembly results from spontaneous symmetry breaking as a
control parameter (say, Cy) is varied. Symmetry breaking
does not lead to a unique solution, but rather to an entire
family of equivalent solutions (Goldstone modes or group
orbit) [27,28]. In Fig. 1(a), they correspond to arrays with
differing hexagonal orientations. In other words, when an
isotropic and homogeneous system self-assembles, the hex-
agonal orientation of a domain can be arbitrary and is deter-
mined on the basis of uncontrollable factors like small fluc-
tuations in the deposition. In large-aspect-ratio systems,
hexagonal orientations of domains sufficiently far apart are
uncorrelated, giving the overall labyrinthine pattern [29-31].

Our goal is to design a system so that the hexagonal ori-
entation in every domain of the pattern is in a predetermined
direction. We propose to break the rotational symmetry of
the system by using a mask placed a small distance above the
substrate to selectively impede deposition. A mask consisting
of two arrays of uniform parallel stripes oriented 60° apart
[see Fig. 2(a)] can be used to achieve our goal. The direc-
tions specified by the mask are two of the six symmetry axes
of the hexagonal array that forms on the monolayer.

Geometrical properties of the mask are related to statisti-
cal features of a self-assembled labyrinthine structure. First,
in order for the pattern to cover the entire domain, it is nec-
essary for the atoms to diffuse to sites covered by the mask.
As discussed below, this implies that the width of each stripe
is limited by the “diffusion length” [29,32]. The remaining
feature defining the mask is the interstripe distance. What is
needed is that each region defined by the mask not contain
more than a single hexagonal domain; i.e., openings of the
mask should be smaller than the characteristic domain size
[see Fig. 1(a)]. Once the hexagonal orientation in each do-
main is fixed, only the translational degeneracy remains as a
possible source of pattern irregularity. However, it is known
that these “phase defects” are typically removed during pat-
tern relaxation [29,33].

Figure 1(a) is a long-time solution of Eq. (1) with Q
=1.6 and =1.6. The mean concentration C;, (=0.38) is cho-
sen to be within the range of stability [0.30, 0.47] of hexago-
nal arrays. The nearest-neighbor distance can be shown to be
871/ Q\3=9.1 units [34]. The numerical integration of model
(1) is conducted for a time of 10° (arbitrary) time units using
a semi-implicit spectral method [35]. We verify that C(x,y)
remains unchanged during the last quarter of this time
interval.

There is one subtlety regarding the choice of the domain
of integration. Its horizontal extent is 1024 units (lattice
size=1) with periodic boundary conditions. However, the ob-
lique set of stripes of the mask will, typically, not match
periodically at the top and bottom boundaries. Consequently,
the pattern develops defects near these edges. We circumvent
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FIG. 2. Results from the numerical integrations of model (1)
with masked deposition. The control parameters used in the integra-
tion are Q=1.6, Q=1.6, and Cy=0.38. (a) The mask used for the
integration. The width of stripes on the mask is 8 units. The inter-
stripe distance of the horizontal array is 32 units; the domain shown
has an extent of 1024 X 1024 units. (b) A texture generated by in-
tegrating the model in the presence of the mask. Note that the
domain of integration is larger and there are defects near the top and
bottom edges because the oblique set of stripes of the mask does not
match periodically. The image shown is one of height 1024 units
away from these edges. The aspect ratio for this pattern is 115.

this problem by integrating model (1) with a vertical extent
of 1280 units and only considering monolayer sites suffi-
ciently far from the top and bottom edges.

Interestingly, the diffusion length and characteristic do-
main size needed to construct the mask can be estimated
using the dynamics of the structure factor S(k) (i.e., the width
of the radial projection of the power spectrum), shown in
Fig. 1(b) [33,36]. It is known that pattern relaxation occurs in
two stages [36,37]. The first, domain growth, is characterized
by a /2 decay of S(k). During this stage, patterns emerge
out of the uniform background. The second stage, domain
coarsening, exhibits a significantly slower decay of S(k). The
diffusion length and the characteristic long-time domain size
are inversely proportional to the values of S(k) at the end of
the first stage and at long times, respectively [37]. The mask
used for the integration is shown in Fig. 2(a). It consists of
two arrays of uniform, equally spaced stripes. The width of
each strip is 8 units, smaller than the diffusion length of ~25
units. Neighboring strips are 32 units apart, smaller than the
characteristic domain size of ~75 units.

The slow epitaxial deposition was modeled as follows.
We initially deposited the monolayer with a coverage
C(x,y)=0.30 without a mask. The homogeneous solution is
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FIG. 3. Hexagonal states generated at Q=1.0, 1=1.76, and
Cy=0.476 when the mask is irregular. (a) Stripes of the mask are 32
units wide and they are 128 units apart. A stochastic component
whose magnitude is up to 8% of the stripe width is added to each
site of the edge. (b) The pattern generated continues to be a perfect
hexagonal domain. Note that the nearest-neighbor distance is 14.5
units and the horizontal aspect ratio is 72.

the unique stable state here. [Formation of the perfect array
is independent of the value of C(x,y) at this point.] Next, the
mask is placed above the substrate and the remaining atoms
are deposited (with a stochastic term of amplitude 0.01) so
that the overall mean concentration is Cy=0.38. Now, the
stable solution is the broken-symmetry hexagonal state. Pat-
terns similar to Fig. 1(a) are observed in the absence of the
mask. In contrast, with the mask in place, the final solution
reduces to a perfect hexagonal array, such as the one shown
in Fig. 2(b).

We have verified that the orientation of the lattice on
which the integration is carried out plays no role in generat-
ing ordered patterns. Specifically, if the mask is rotated by
45°, then the perfect hexagonal array obtained is oriented 45°
as well. However, it should be noted that the domain used for
the integration needs to be extended in both the x and y
directions due to the mismatch of the mask. The formation of
defects near the boundaries is only an artifact of the numeri-
cal algorithm and has no bearing on an experimental setup.

From an experimental perspective, it may be necessary
for the mask to consist of wider stripes. This can be imple-
mented by choosing appropriate control parameters. For ex-
ample, the characteristic domain size at 0=1.0, )=1.76, and
Cy=0.476 is larger than that for the previous set of control
parameters. Hence, it becomes possible to use a mask with
wider stripes and a larger interstripe distance [see Fig.
3(a)]—the nearest-neighbor distance at these control param-
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eters is 14.5. The mask has an added feature. Figure 2(a) has
a perfect geometric shape; the stripes have fixed width, and
the interstripe distance is constant. Currently, it iS not pos-
sible to create such ideal nanoscale structures. The state-of-
the-art lithographic techniques can create stripes to within
5%-10% level of irregularity in the edges [38]. In order to
test if masking will prove useful in a more realistic, experi-
mentally relevant setting, we have introduced irregularities
by shifting each site of the edge by a random variable whose
magnitude is 8% of the mean stripe width. As seen from Fig.
3(b), the formation of an ordered hexagonal pattern is not
affected.

The geometrical characteristics of the mask can be de-
duced from the dynamics of the structure factor. Since
nanostripes of width as small as ~20 nm can be produced
with current technology, it should be possible to find many
experimental systems where perfect monolayer arrays can be
engineered. Note that the construction of nanostripes re-
quires very elaborate and time-consuming techniques
[39-43]. However, the mask is only used to guide the nano-
scale growth and can be reused.

Our studies were conducted on a phenomenological
model of epitaxial deposition that is isotropic. Such systems
have the largest freedom in the choice of hexagonal orienta-
tions following symmetry breaking. Consequently, they are
the class of systems where it is most difficult to generate
ordered arrays. A logical question now is, what happens with
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anisotropic systems? For example, single-crystal substrates
(typically used) are elastically anisotropic and intrinsically
break rotational symmetry. However, a key point to realize is
that breaking of the rotational symmetry by itself is insuffi-
cient. In fact, masks with single striped arrays also break the
isotropy of the system. We have indeed verified that such a
mask configuration cannot generate perfect patterns. Two ad-
ditional ingredients are essential: (i) a striped array in the
mask in the second direction, which is exactly oriented 60°
to the first array, and (ii) the openings provided by the masks
should be smaller than the characteristic domain size.

As alluded to earlier, our general approach involving
masking has ramifications beyond the specific illustrative
model considered here. For instance, our preliminary work
on a model of quantum dot growth with wetting governed by
a different nonlinear differential equation [25,26] shows that
perfectly ordered arrays can be formed using methods out-
lined here [44].

This work was partially funded by the National Science
Foundation through Grants No. DMS-0607345 (G.H.G.) and
No. CMMI-0709293 (G.H.G), the Office of Naval Research
through Grant No. N000140510662 (P.S.), the Welch Foun-
dation through Grant No. E-0608 (D.J.K), and grants from
the Texas Center for Superconductivity at the University of
Houston (G.H.G. and P.S.).

[1] K. Kern et al., Phys. Rev. Lett. 67, 855 (1991).
[2]1J. Z. Zhang et al., Self-Assembled Nanostructures (Kluwer
Academic/Plenum, New York, 2003).
[3] K. Pohl et al., Nature (London) 397, 238 (1999).
[4] K. Umezawa et al., Phys. Rev. B 63, 035402 (2000).
[5]7J. E. Guyer and P. W. Voorhees, J. Cryst. Growth 187, 150
(1998).
[6] V. L. Colvin et al., J. Am. Chem. Soc. 114, 5221 (1992).
[7] D. Duonghong ef al.,J. Am. Chem. Soc. 104, 2977 (1982).
[8]J. Z. Zhang et al., J. Phys. Chem. 98, 3859 (1994).
[9] R. Plass et al., Nature (London) 412, 875 (2001).
[10] Y. Chen and A. Pepin, Electrophoresis 22, 187 (2001).
[11] E. Wahlstrom et al., Phys. Rev. B 60, 10699 (1999).
[12] K.-O. Ng and D. Vanderbilt, Phys. Rev. B 52, 2177 (1995).
[13] F. Glas, Phys. Rev. B 55, 11277 (1997).
[14] Z. Suo and W. Lu, J. Nanopart. Res. 2, 353 (2000).
[15] B. G. Orr et al., Europhys. Lett. 19, 33 (1992).
[16] A. W. Hunt et al., Europhys. Lett. 27, 611 (1994).
[17]7J. E. Guyer and P. W. Voorhees, Phys. Rev. Lett. 74, 4031
(1995).
[18] V. A. Shchukin er al., Phys. Rev. Lett. 75, 2968 (1995).
[19] V. A. Shchukin et al., Surf. Sci. 352, 117 (1996).
[20] I. Daruka and A.-L. Barabasi, Phys. Rev. Lett. 79, 3708
(1997).
[21] B. J. Spencer and J. Tersoff, Phys. Rev. Lett. 79, 4858 (1997).
[22] B. J. Spencer er al., Phys. Rev. Lett. 84, 2449 (2000).
[23] M. Blanariu and B. J. Spencer, IMA J. Appl. Math. 72, 9

(2007).
[24]J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 (1958).
[25] B. J. Spencer et al., J. Appl. Phys. 73, 4955 (1993).
[26] A. A. Golovin ef al., Phys. Rev. E 68, 056203 (2003).
[27] M. Field, Trans. Am. Math. Soc. 259, 185 (1980).
[28] M. Golubitsky and D. S. Schaeffer, Singularities and Groups
in Bifurcation Theory (Springer-Verlag, New York, 1984).
[29] M. C. Cross and P. C. Hohenberg, Rev. Mod. Phys. 65, 851
(1993).

[30] M. C. Cross and A. C. Newell, Physica D 10, 299 (1984).

[31] G. H. Gunaratne et al., Phys. Rev. E 50, 2802 (1994).

[32] Q. Ouyang and H. L. Swinney, Nature (London) 352, 610
(1991).

[33] K. R. Elder er al., Phys. Rev. A 46, 7618 (1992).

[34] S. Hu et al., J. Mech. Phys. Solids 55, 1357 (2007).

[35] W. Lu and Z. Suo, J. Mech. Phys. Solids 49, 1937 (2001).

[36] H. R. Schober er al., Phys. Rev. A 33, 567 (1986).

[37] S. Hu et al., Nonlinearity 17, 1535 (2004).

[38] Handbook of Nanotechnology, edited by B. Bushan (Springer,
Berlin, 2003), p. 170.

[39] P. Rai-Choudhary, Handbook of Microlithography (SPIE, Bell-
ingham, 1997).

[40] L. Ming et al. (unpublished).

[41] R. D. Piner et al., Science 283, 661 (1999).

[42] S. D. Golladay et al., J. Vac. Sci. Technol. B 18, 3072 (2000).

[43] J. A. Liddle et al., Microlithogr. World 6,15 (1997).

[44] F. Shi et al. (unpublished).

025203-4



